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A model dynamical system with a great many degrees of freedom is proposed 
for which the critical condition for the onset of collective oscillations, the 
evolution of a suitably defined order parameter, and its fluctuations around 
steady states can be studied analytically. This is a rotator model appropriate for 
a large population of limit cycle oscillators. It is assumed that the natural fre- 
quencies of the oscillators are distributed and that each oscillator interacts with 
all the others uniformly. An exact self-consistent equation for the stationary 
amplitude of the collective oscillation is derived and is extended to a dynamical 
form. This dynamical extension is carried out near the transition point where 
the characteristic time scales of the order parameter and of the individual 
oscillators become well separated from each other. The macroscopic evolution 
equation thus obtained generally involves a fluctuating term whose irregular 
temporal variation comes from a deterministic torus motion of a subpopulation. 
The analysis of this equation reveals order parameter behavior qualitatively 
different from that in thermodynamic phase transitions, especially in that the 
critical fluctuations in the present system are extremely small. 

KEY WORDS:  Large dissipative system; population of limit cycle oscillators; 
order parameter; phase transition via mutual entrainment; approximate 
invariant measure; dynamical extension of self-consistent equation; critical 
slowing down; anomalous critical fluctuation. 

1. I N T R O D U C T I O N  

When a pair of limit cycle oscillators with different natural frequencies are 
coupled, they often come to oscillate with an identical frequency. ~1) This is 
called mutual synchronization or mutual entrainment, and is commonly 
met in many scientific areas, including nonlinear optics, electrical 
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engineering, fluids, chemical reactions, physiology, and so on, i.e., wherever 
limit cycle oscillations arise at all. (2) It may as often happen that their 
frequencies remain independent of each other, and in that case the system 
as a whole should exhibit a quasiperiodic motion. Admittedly, coupled 
oscillatory processes could also generate many other complicated 
behaviors, such as frequency locking in various frequency ratios and 
chaotic motion. (3) However, insofar as the mutual coupling is sufficiently 
weak and the oscillators are sufficiently similar, we have only two 
possibilities, one-to-one synchronization and quasiperiodicity. (4) The 
dynamics of a loosely coupled pair of oscillators is thus almost trivially 
simple, and this fact will be a great adVantage in extending the scope of 
study to systems of infinitely many oscillators in weak mutual contact. 

Physiological implications of these kinds of oscillator communities 
were fully appreciated by Winfree, (5'6) who was the first to point out the 
possibility that large oscillator populations with a frequency distribution 
exhibit a peculiar collective organization or phase transition. (5) In the 
phase transitions he described the system changes from a macroscopically 
quiescent phase to a collectively oscillating phase at some critical coupling 
strength. This is quite dramatic and a number of related theoretical works 
have since appeared. (7 11) Is it right to say that Prigogine's concept of time 
order, ~12) which refers to the spontaneous emergence of macroscopic 
rhythms in nonequilibrium open systems, found its finest example in this 
transition phenomenon, all the more so because the cooperative 
implications of the word would be hard to capture solely by the Hopf 
bifurcation idea? Is it also right to say that the concept of order through 
fluctuations (~3) has now acquired an even deeper implication, because the 
fluctuations here need no longer be imagined as something supplementary 
to the dynamics, but should rather be considered as something inevitably 
arising from the governing deterministic law of motion? 

It seems that much of fresh significance beyond physiological relevance 
could be derived from Winfree's important finding (in 1967) after our 
experience of the great advances in the field of nonlinear dynamics over the 
last two decades. This belief is confirmed by the fact that oscillator 
populations, if properly modeled, constitute typical "complex systems" (in 
the modern usage of the word), representative examples of which include 
cellular automata (~4) and lattices of coupled mappings. (15) The theory 
developed below was partly motivated by such newer trends in nonlinear 
dynamics. We shall deal with a transition phenomenon exhibited by a large 
dynamical system of dissipative nature, and try to make clear some 
statistical mechanical aspects of the transition. Our primary concern is to 
reduce the microscopic dynamics, i.e., the dynamics at the level of the 
individual oscillators, to that at a macroscopic level, or, in other words, to 
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extract an order parameter evolution equation in a closed form whereby 
some fluctuations may necessarily be involved. 

By statistical mechanics we do not mean the traditional one, because 
what we have to deal with is totally unlike the Hamiltonian system. The 
stochasticity involved is by no means extrinsic, but comes from the com- 
plicated nature of the solutions to a large set of ordinary differential 
equations. In dynamical system language, we expect that an ergodic motion 
on a high-dimensional attractor is going on, and if this is the case, all 
statistical properties could in principle be determined from the 
corresponding invariant measure. However, a naive application of the 
invariant measure to statistical calculations would simply produce long- 
time averages, by which the most crucial feature of temporal order would 
be lost. Fortunately, in the present theory, using a rotator model under 
mean-field coupling, such a problem does not arise if one constructs an 
approximate invariant measure in a self-consistent manner, and one will 
find how the invariant measure idea and temporal symmetry breaking can 
be reconciled with each other. 

This paper is organized as follows (see also Fig. 1 for the construction 
of the present theory). In Section 2 we introduce a rotator model with 
mean field coupling as an extreme simplification of a large oscillator 
population with frequency distribution. In the same section we review a 
previous theory concerning steady states, but with stronger emphasis on 
the mechanical basis of the system statistics than in the previous work. Our 
theory leads to a self-consistent equation for steady state values of a 
suitably defined order parameter, and predicts the existence of a critical 
condition for the onset of collective oscillation. The term steady states here 
refers to periodic oscillations as well as quiescent states, because the order 
parameter as we define it later takes a constant value in each case. The 
number density distributions as a function of phase and of coupling- 
modified frequency is also obtained from this theory. 

A notable feature of our system is that it clearly splits into two sub- 
systems in the presence of collective oscillation, namely a synchronized part 
of the population and a desynchronized one. It is only the synchronized 
part that contributes to the amplitude of the steady oscillation. In Section 3 
our self-consistent equation for the order parameter is generalized into a 
dynamical form so that one can study the approach to (departure from) 
steady states. Since the present system has no conserved quantities of 
additive nature, dynamical reduction seems possible only near the trans- 
ition point where the time scale of macrovariables becomes distinctively 
longer than those of microvariables. The idea underlying the derivation of 
the time-dependent self-consistent equation is reminiscent of the dynamical 
reduction in gas kinetics, such as the determination of transport coefficients 



572 Kuramoto and Nishikawa 

model ~i = ~i - N-I K Z sin(r 
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Fig. 1. Construction of the present theory. For notation, refer to the text. Asterisks indicate 
specific problems to be discussed. 

from the Boltzmann equation ~16) or the derivation of the Navier-Stokes  
equation from lattice-gas cellular automata. ~17) In all these problems the 
small deviation of the number density distribution from its local 
equilibrium form is crucial in generating the evolution of macrovariables. 

We also analyze the resulting evolution equation to learn the stability 
of  steady states. The stability here is not mechanical, but rather statistical 
in nature. This is reflected in the fact that our steady states always involve 
some fluctuations. The relaxation of the order parameter will be found to 
be anomalously  slow, and even slower than in the usual critical slowing 
down. This is due to the fact that the fundamental time scale of the system, 
which is given by the microscopic time scale of the subpopulation relevant 
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to the order parameter dynamics, is by no means a constant parameter, but 
is strongly dependent on the evolving order parameter value itself. 

Section 4 deals with order parameter fluctuations around steady states. 
The fluctuations can be calculated from the approximate invariant measure 
already found in Section 2. Such a theory, however, ignores the possibility 
that the synchronized part of the population could also participate in the 
order parameter fluctuations, and this effect might be important near the 
critical point. Section 5 is thus devoted to an improvement of the theory 
presented in Section 4. The improvement will be achieved not by looking 
for a correct invariant measure beyond the one obtained in Section 2, but 
by analyzing the order parameter equation derived in Section 3 with an 
additional stochastic term (which originates from the desynchronized sub- 
population). This term, whose statistical properties have already been 
revealed in Section 4, is neglected in Section 3 because its simple average is 
vanishing. We discuss critical fluctuations from this stochastic evolution 
equation and find that they are unexpectedly weak, and, moreover, the 
angular fluctuation of the complex order parameter does not diverge. These 
results are in remarkable contrast to ordinary phase transitions, and their 
origin will be clarified. A few remarks on the present theory as viewed in a 
somewhat broader perspective are given in the final section. 

2. MODEL SYSTEM AND ITS STATISTICAL STEADY STATES 

In this section, we start with the definition of our model system and 
then give an outline of a theory to find its macroscopic steady states (which 
are of statistical nature). The steady state theory to be presented here is 
basically the same as the one developed earlier by Kuramoto, (4'9~ except 
that here it is more clearly stated how the statistics of our system is based 
on the underlying deterministic law of motion. 

The model considered is a population of a large number of similar 
elements which we call active rotators. An active rotator refers to a phase 
description of a limit cycle oscillator, and due to its extreme simplicity it 
has conveniently been employed in the study of collective behavior of large 
populations in the form of either aggregates or extended tissues. (5'7'9'18 21) 
In its simplest version, our rotator free from external disturbance obeys the 
equation 

aO/dt = ~ ( 2 . 1 )  

where ~b represents the phase (mod 2g) of the oscillator, and co is its natural 
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angular frequency. Suppose that infinitely many such rotators come into 
mutual contact. Then the model we propose is given by 

N 

d(~/d t  = co~ + ~ Fo.((~ j - q~), i = 1, 2,..., N (2.2) 
j = l  

where N is sufficiently large, and Fu(~b ) are 2~-periodic functions of ~b. 
Equation (2.2) is invariant under the simultaneous translations ~b i ~ ~b; + ~b o 
( i=  1, 2,..., N), where ~bo is an arbitrary constant. The above model may 
look somewhat heuristic, but it can actually be derived perturbatively from 
a general system of coupled ordinary differential equations 

N dx,= + • G,j(X , Xj) (2.3) 
dt  j = l  

describing coupled limit cycle oscillators. ~4'2~) If in Eq. (2.3) the coupling 
terms G O are small and the dependence of F~ on i is weak (i.e., the 
oscillators are similar to each other), then the phases are found to be the 
only relevant variables. As was argued previously,/4'2~) a natural definition 
of phase and a lowest order perturbation theory lead to a great contraction 
of Eq. (2.3), and one can obtain a universal dynamical equation in the form 
of Eq. (2.2). 

Throughout the present paper, we will be concerned with a mean field 
model. This is a particularly simple system defined by a special form of 
interaction as 

Fij(~b) = K sin ~b, i , j =  1,2 ..... N (2.4) 
I V  

Since in this model the individual oscillators interact with the other N -  1 
oscillators with uniform strength, how they are distributed in real space is 
completely irrelevant. The coupling constant K is assumed to be positive, 
so that any pair of oscillators may favor minimizing their phase difference 
rather than maximizing it. The natural frequency ~oi are distributed 
according to the number density distribution g(co) defined by 

1 
6(~o s - co) (2.5) g(~) = ~ .  

j = l  

which is normalized. For the sake of simplicity, g(o~) is assumed to be sym- 
metric about some frequency c~ 0 and to approach a sufficiently smooth 
function of ~o as N goes to infinity. Instead of ~bi, it is more convenient to 
work with new variables ~i defined by 

~,;= ~b~- COot (2.6) 
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Upon reassignment of the notation coi to coi-  COo, the model equation takes 
the form 

dt = c o l - ~  s in(Oi-  ~j) (2.7) 
j=l  

where the symmetric distribution g(co) is now centered about zero. 
Macroscopic states may most conveniently be characterized by the 

complex order parameter Z defined by 

1 N 
Z(t) = ]Z(t)] e ~~ = - -  y" e z~ (2.8) 

N .  J--I 

This quantity may alternatively be expressed as 

f0 ~72 Z(t) = n(r t)e 'e' d O (2.9) 

where n(O, t) is the number density of the oscillators with phase ~ at 
time t: 

1 N 

n(O, t )=Nj~=l  6(tpj(t)- t)) (2.10) 

The great advantage of our mean field model from a mathematical point of 
view is that Eq. (2.7) reduces formally to a noninteracting system 

d@i - c o i - K l Z l  sin(tpi- O) (2.11) 
dt 

Before proceeding to the main part of the theory, it would be 
appropriate to give a brief speculative discussion as to the kind of steady 
states to be realized in our system. Suppose that n(O, t) approached irrever- 
sibly to a certain steady distribution. Due to the aforementioned con- 
tinuous rotation symmetry inherent in our system, one may expect the 
existence of a uniform (and hence time-independent) state n =  (2re)-' 
representing the steady state of highest symmetry. Obviously, the 
corresponding order parameter value is vanishing, implying the absence of 
collective oscillation. Such a state is quite probable when the mutual 
coupling is sufficiently weak; for stronger coupling, n could become non- 
uniform as a result of a symmetry-breaking instability. Again from the 
rotational symmetry of the system, such nonuniform n should propagate 
steadily like 

n(~9, t) = n(~ - f2t) (2.12) 
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as long as no further symmetry-breaking instability occurs. Steady 
propagation of the distribution implies steady rotation of Z, or 

Z(t) = IZI e i~t+~176 (2.13) 

where ]ZI, (2, and Oo are constants. The system then behaves as a giant 
oscillator. Incidentally, the order parameter frequency t'2 should vanish in 
the present special model, because by symmetry we find no reason why Z 
should prefer one direction of rotation to the other; recall that g(co) is sym- 
metric about zero, so that the set of equations (2.7) as a whole remains 
invariant when the signs of all $i are reversed simultaneously. 

Assuming that the system on a macroscopic scale approaches a steady 
state of constant Z, we will now show how this order parameter value is 
found theoretically. It is seen that under constant Z, Eq. (2.11) can be 
solved explicitly for each $i, where the solutions still depend on the 
unknown constant Z. The entire solution set (~kl, ~2,..., ~/U) then deter- 
mines the distribution n($), and its insertion into Eq. (2.10) yields an exact 
self-consistent equation for Z. This is the way in which the steady state 
problem is solved macroscopically. It may be questioned, however, how we 
can say that n(~b) thus constructed actually becomes stationary as t ~ ~ ,  
for Eq. (2.11) does not always allow for a time-independent solution. This 
point will be examined in further detail below. 

Equation (2.11) with constant Z clearly divides the system into two 
subpopulations, one satisfying the condition [coi/KZI ~< 1 and the other 
Io~i/KZI > 1. The first group consists of oscillators whose motions are 
synchronized to the self-generated collective oscillation and will be called 
the S group; the second group represents the desynchronized part of the 
population, and will be called the D group. If we define the coupling- 
modified frequency cbi of the ith oscillator by a long-time average of d~/dt, 
or by 

1 
05 i = l i m  -~ {$i(to + T ) -  $i(to) } (2.14) 

then ch i are vanishing for the S group and nonvanishing for the D group. In 
what follows, the indices s and d attached to some quantities refer to S and 
D groups, respectively. For instance, the quantities n and Z, which are the 
most basic ones, may be decomposed as 

n=n~+n~ (2.15a) 

(2.15b) 

where 
Z = Z~ + Zd 

Zs.d(t) = f~" n~,d($~ t)e '~" d~O (2.16) 
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The respective contributions to the order parameter from the two sub- 
systems are now considered. 

S Group. Let the oscillators of this group be numbered as 
i = 1, 2 ..... N~, where 

N ~ = N  f KIzl g(co)&o (2.17) 
~--KIZ[ 

The fraction 

N s / N -  r (2.18) 

therefore measures the degree of frequency condensation into the zero fre- 
quency, and may be regarded as another order parameter. From Eq. (2.17) 
it is clear that r is proportional to [Z] while these quantities remain small. 

The phases of S-group oscillators approach fixed points ~ki0(Z), where 

~io(Z) = O + s in- l (cojKlZt)  (2.19) 

the stability of which is easy to confirm; another fixed point, which appears 
at + ~ - f f t o  (~io<>0), is unstable. Though rather trivial, the group S 
therefore forms an equilibrium measure 

Pso(~) = 6(V~ - V0~) (2.20) 

on an Ns-dimensional t o r u s  T us, where the vector notations 

~r = (~1, ~2 ..... ~PUs) (2.21a) 

�9 ~o = (~blO, ~92o,-.-, ~Ns0) (2.21b) 

have been used. This measure allows us to express the equilibrium phase 
distribution nso(r as 

nso(~; Z) = dWp~o(Ip) ~ 6(~j -- tfi) 
j = l  

= ~  KIz/do g(~o) 6 

= g(KIZI sin0p - O)) KIZI cos(~b - O) (2.22) 

where ~o 2~ dVs stands for I ' " ~  1~N%1 d0j. The same result for n~o may 
more easily be reached from the identity 

n~o(O) d0 = g(co) do) (2.23) 
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and the q/-co relation (2.19) or 

= K I Z I  s in(q/ -  O) (2.24) 

D Group .  There are N - N ~ - =  Na oscillators belonging to this group. 
Their phases are unlocked and change monotonically with t at the rate 
vi(q/i), where 

v~(q/~) = o9~- K I Z [  sin(q/~- O) (2.25) 

The coupling-modified frequency of the ith oscillator becomes 

2~z 2~ 
(79i- f2~/o~i d t -  ~2~ dq//vi(q/ ) - (092 - [KZ[ 2)1/2 (2.26) 

J0 

We now come back to our previous question concerning the possibility for 
D-group oscillators to form a stationary phase distribution. It is essential 
to notice that these oscillators, if viewed as an Nd-dimensional dynamical 
system, undergo an ergodic motion on T ud. Here, of course, eSi are 
supposed to be rationally independent. The motion on T ua is governed by 
the equation 

d ~ a / d t  = va(~d) (2.27) 

where 
~ga = (0us+ 1, q/Us+2 ..... q/U) (2.28a) 

vd = (VUs + 1, VNs + 2 ..... VU) (2.28b) 

If we introduce an ensemble composed of desynchronized subpopulations 
of an identical mechanical structure, then Eq. (2.27) is equivalent to the 
following evolution equation for the corresponding density distribution 
Pd(~ga, t) on TNa: 

Opd/Ot = --div(vpd) (2.29) 

The normalized equilibrium density p~o(~ga) is thus most naturally chosen 
a s  

N 

P~o(Vd) = 1~ ~/2~rlvj(q/j)l (2.30) 
j = N s + l  

Analogously to the case of nso(q/), the equilibrium phase distribution nao(q/) 
is obtained as 

n a o ( q / ; Z ) =  d ~ g a p a o ( V a l N  j=u~+ 1 

1 C ~ oo 09(092 --  I K Z I  2)1/2 
JK/izl do9 g(e~) ~o2--- ~-~---si-~--_ ~)l 2 (2.31) 
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Having thus found expressions for ns0 and f/d0, we now substitute them into 
Eq. (2.9) to obtain an exact self-consistent equation for Z. Due to the 
property nd0(~,)=nd0(0+Tc), the oscillators of the D group do not 
contribute to the order parameter value. Our self-consistent equation thus 
becomes 

z = s ( z )  

f] ~ nso(0; Z)e io dO 

= 2 dy KZg(KIZ] y)(1 - y2)1/2 (2.32) 

Since S(Z) is an odd function of Z, it is expanded for small Z as 

S(Z) : (1 + e ) Z -  [3 ]ZI2Z+ O(IZI 5) (2.33) 

where 

= ( K -  Kc)/K c (2.34a) 

Kc = 2/zig(0) (2.34b) 

j ~  1 3 - r~TzK~ g"(0) (2.34c) 

Suppose that g(o)) is convex at ~o = 0, i.e.,/~ > 0, and consider the situation 
where K is increased continuously. Up to Ko, the only possible solution of 
Eq. (2.33) is the zero solution. At Kc a new solution branch bifurcates from 
the zero branch. Near Kc the new solution is given by 

Z - -  (g./fl)l/2 e i~ (2.35) 

where O is an arbitrary constant. One would expect that a transfer of 
stability occurs at K~ from the trivial zero solution to the nontrivial one, 
since this actually happens in a supercritical pitchfork bifurcation; if fl is 
negative, in contrast, the nontrivial branch that appears on the side of 
negative e is naturally expected to be unstable, analogously to a subcrifical 
pitchfork bifurcation. At this stage of the present theory, however, nothing 
can yet be claimed about the stability of these macroscopic steady states. It 
would be only when an evolution equation for Z has been derived that 
something can be stated about their stability. The derivation of such an 
equation is the subject of the next section. 

As additional information gained from our steady state theory, we 
derive here some formulas for the distribution of the coupling-modified 
frequencies. Such formulas will become relevant to the study in Section 4. 
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The normalized distribution of c5, which will be denoted as G(cS), can be 
expressed as a sum of two parts: 

G(05) = G~(cS) + Ga(eS) (2.36) 

Since every oscillator in the S group has vanishing 05, the quantity G~(05) is 
proportional to 6(c5), and its total intensity equals r, so that 

Gs(& ) = r ~(&) (2.37) 

For obtaining Gd(oS), it is convenient to use the identity 

Gd((~ ) d(o = g(o)) de), Ico/KZI > 1 (2.38) 

and the co -  05 relation given by Eq. (2.26). Their combination immediately 
leads to 

I~1 
Gd((~) = g((~2 q_ [KZI2),/2 (~2 + IKZI2) '/2 (2.39) 

It is seen that the distribution G almost coincides with the bare distribution 
g in the high-frequency region, IcS/KZI >> 1, while its deviation from g 
becomes pronounced for I(o/KZ[ < 1. The delta peak is obviously the 
consequence of a finite fraction of the population being pulled into a single 
frequency. This in turn causes a marked intensity drop around the delta 
peak. Near the transition point, Ga(c5) at extremely low frequencies 
behaves as 

G "  ~, g(O) afro) --- ~ I~1 (2.40) 

Finally, it is remarked that the equilibrium measure Po(~) where 
- (u u is simply given by the product 

Po(~) = Pso(Vs) Pdo(~d) (2.41) 

It is important to realize that the above Po is not exact for finite N, because 
the parameter Z on which P~o and Pao depend has been supposed to be 
constant, whereas Z is actually not strictly constant, but always involves 
some fluctuations. Of course, our approximate P0 may be accurate enough 
for calculating averages of macrovariables such as Z, and may also be 
useful for obtaining order parameter fluctuations in some situations (see 
Section 4). The insufficiency of Po will become apparent in Section 5, where 
the fluctuations are more carefully examined near the critical point Ko. 
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3. E V O L U T I O N  E Q U A T I O N  FOR T H E  O R D E R  P A R A M E T E R  

The self-consistent equation (2.32), which is exact in the limit N---, oe, 
will now be extended to a dynamic form, and some of its consequences will 
also be discussed. One may anticipate that such dynamical extension will 
be possible at least near the critical point due to the expected slowing down 
of the order parameter motion there. Slowing down of Z allows the 
microscopic degrees of freedom, i.e., individual 0i, to follow Z almost 
adiabatically. Consequently, these rapid variables will be completely 
eliminated from the expression, resulting in a great reduction of the 
dynamics. In this way, a universal evolution equation for Z will be 
obtained. In the theory presented below, it is always assumed that K is 
close to K~, so that Z is sufficiently slow, and also that [Z[ is much smaller 
than 1, which means that the system is near a steady state. 

If Z evolves extremely slowly, the phase distribution n(0, t) at each 
moment will establish its steady state almost completely, that is, 

n(0, t) -~ no(0; Z(t)) = n~o(0; Z(t)) + nao(0; Z(t)) 

Unfortunately, this simple approximation for n(0 , t) merely leads to Z(t)= 
S(Z(t)), which is identical to Eq. (2.32) and no evolution of Z is produced 
at all. The deviation of n(0, t) from its time-local steady state form is 
therefore essential in generating the dynamics of Z. Slow variation of Z at 
least enables us a fairly clear-cut separation of the population into S and D 
subsystems at each moment according to the criterion ]co/KZ(t)[ ~ 1. 
Actually, however, the threshold condition co-= +_KIZ[ will be slightly 
obscured due to the motion of Z, and there should be a small number of 
vague oscillators lying near the borderline between the two subpopulations. 
A crude picture of what makes the borderline obscure is the following. The 
oscillators near the borderline have extremely long time scales, say T~, 
which could be even longer than that of Z, say T2. On the other hand, the 
minimum time interval needed for deciding upon the group to which these 
oscillators should belong is comparable to T1. While such a decision would 
only be possible if the variation of Z over the period T1 were negligible, the 
inequality T~ > T2 clearly contradicts this requirement. 

The present theory completely ignores the effects of these marginal 
oscillators, and its theoretical justification would require much more 
elaborate study. A few minor technical difficulties arising from such an 
unnaturally clear division using the condition Ico/KZ[ ~ 1 will be eliminated 
by a suitable prescription. We now concentrate on the investigation of non- 
adiabatic effects on n(0, t), and treat groups S and D separately again. 
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S Group. In the zeroth approximation in slowness of Z, the solution 
of Eq. (2.11) takes the equilibrium form 

O,(t )  = O , o ( Z ( t ) )  (3.1) 

In order to include nonadiabatic effects, which should necessarily be small, 
we put 

0 , ( 0  = ,/ , ,o(Z(t)) + 64,i(t) (3.2) 

and linearize Eq. (2.11) in 6~/i as 

d&p,_  (IKZI2 _(D2)1/2 (~l/ti_d~io (3.3) 
dt dt 

The solution of Eq. (3.3 as t ~ oo is of the form 

f t  d~k~o(Z(t,)) { f ,  dt,, ElKZ(t,,)12 e)~]~/2} (3.4 ) 
(~l/l i( t ) = -- oo dt' dt' - , 

Partial integration of Eq. (3.4) and its substitution into Eq. (3.2) lead to 

4,,(t) = clC ~ , o ( Z ( t -  c) e(t ,  t'; ~oi) (3.5) 

where P is a normalized weighting function and is defined by 

} P(t, t'; coi)= - - - d  exp - d t"[ lKZ(t")[2-0~2] ~/2 (3.6) 
dt' - c 

By comparison of Eq. (3.5) with Eq. (3.l), it is clear that the nonadiabatic 
effects are the consequence of the fact that the decay time vi of P as a 
function of t' is nonvanishing. The vi is nothing but the time scale of the ith 
oscillator and is typically of the order of ]KZ(t)]-~. This is a large quantity 
because of the assumed smallness of ]Z(t)i; still, the nonadiabaticity 
remains small because by assumption the time scale of Z is even longer 
than vi or, equivalently, Z changes only a little in relative magnitude over 
the time interval ~i. Of course, the dynamical equation for Z(t),  whose 
derivation is the main purpose in this section, should be consistent with 
our slowness assumption for Z, and this will be checked at the end of this 
section. 

The fact that Z(t)  changes much more slowly than P (as a function of 
t') leads to the following simplifications in two ways. First, the t" depen- 
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dence of Z in the integral in Eq. (3.6) can be neglected and replaced by 
Z(t).  This leads to 

P(t, t'; co) ~_ [ ]KZ(t)] 2 _ co2] 1/2 exp { - [ ]KZ(t)I 2 _ co2] 1/2 t'} 

=- P(t'; Z(t), co) (3.7) 

Second, @i(t) in Eq. (3.5) is somewhat simplified. We note that the range of 
integration in that equation is practically restricted to (0, rs). Since in this 
range 0so may be regarded as a linear function of the small deviation of Z 
from some standard value of it, say Z(t) ,  the time-averaging operation in 
Eq. (3.5) acts practically on Z, that is, 

~s(t) - 0io(Z(t) s) (3.8) 

where the /-dependent bar is defined by 

Z(t)s = dt' Z ( t -  t') P(t'; Z(t) ,  cot) (3.9) 

The expression for 0r(t) permits us a simple interpretation, that is, an 
S-group oscillator, even though it might be unable to follow immediately 
the motion of Z, will nevertheless rest on a time-local steady state under a 
virtual mean field Z( t )  ~ rather than the true field Z(t).  

Although the virtual mean field is oscillator-dependent, this depen- 
dence is so weak that it would be instructive to ignore it first and observe 
what follows. The result is that 

ns(~, t)= n~o(r z(t)) (3.10) 

which leads to 

Zs(t)  = S(Z(t)) (3.11) 

Furthermore, if Z d vanishes, which is the case for steady states, then 
Eq. (3.11) becomes 

Z( t )  = S(-Z(t)) (3.12) 

This equation describes the evolution of the order parameter, though not in 
a differential form. 

It would probably be too crude an approximation to neglect the 
oscillator dependence of the virtual field. We shall find, however, that 
Eq. (3.12) still holds if a slightly different interpretation is given to Z(t).  Its 
correct definition is 

Z( t )  = dt' Z ( t -  t') Hs(t'; Z( t ) )  (3.13) 
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where H~ is a new weighting function given by 

4 
fo dy (1 y2)t/2 P(t'; Z(t), KIZI y) H~(C; Z(t)) 

4glz ( t ) l  d y ( 1 - y 2 ) e x p { - g l Z ( t ) J ( 1 - y 2 ) l / 2 t  '} (3.14) 

Formulas (3.11), (3.13), and (3.14) are derived in Appendix A. It is easy to 
see tha t / /~  is normalized, i.e., 

fo~ H~(t'; Z) dt'= 1 (3.15) 

and that it behaves for large t' as 

H~(t,;Z)~(xg3lzl3t ,4) 1, t'>>lgZl 1 (3.16) 

Equation (3.13) is now converted into a more familiar differential form. 
Partial integration of that equation gives 

Z(t) = Z(t) + t ~ dt' d Z ( t -  t') Os(t'; Z(t)) (3.17) 
dt' Jo 

Here the function Os is related to Hs through 

and satisfies 
ft ~176 O~(t'; Z) = H~(t"; Z) dt" (3.18) 

Os(0; Z) = 1 (3.19) 

due to Eq. (3.15). The characteristic time of Os(t'; Z) is the same as that of 
Hs(t';Z) and is given by ]KZ] 1, and the t' dependence of O s is only 
through KIZI t'. From this and the fact that the initial amplitude of Os is 
independent of Z [see Eq. (3.19)], we see that 

fo~ o~(c; z) dr'= ~lKZl-' (3.20) 

where ~ is a constant of ordinary magnitude. By assumption, the time 
interval [KZ(t)l 1, i.e., the time scale of Os, is shorter than the time scale of 
Z, which enables us to approximate Eq. (3.17) by the Markovian form 

dz(t) 
Z(t) = Z ( t ) - ~  ~ IKZ(t)l a (3.21) 
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D Group. It was argued at the beginning of this section that na(r t) 
roughly equals rid(C; Z(t)), but that a small difference between them could 
be important. Analogous to the finding about n~(r t), one would expect 
that ha(0, t) might be approximated by something like ndo(O;Z(t)), where 
Z(t) means some time average of Z, but may generally differ from the 
previous quantity under the same notation. Such an anticipation turns out 
to be basically valid, but actually the situation is slightly more complicated. 
Let us introduce the normalized phase distribution /~d(0, t), which we need 
to consider for some technical reasons. In Appendix B it is shown that 
r~d( 0, t) and rid(0, t) are approximately given by 

~a(r  t) = ~do(O; z(t)*) (3.22) 

and 

n,,(~,, t) = f]'~ n~(O', t) dO'. ~do(r z(t)*)  

7-7z 
- -  ndO(0'; Z(t)) dO" Ad0(r Z(t) ~ (3.23) 

where the r dependent bar is the time average defined by 

;? Z ( t )  r = d t '  Z ( t  -- t ')  H d ( 0 ,  t ' ;  Z ( t ) )  

o o d Z ( t - t ' )  = Z(t) + dt' dt' Od(r t'; Z(t)) (3.24) 

The functions Ha and Od are quantities analogous to Hs and Os, respec- 
tively, and satisfy 

clOd(O, t; z )  
dt 

- --Hd( 0, t; Z) (3.25) 

and 

fo" Hd(O, t'; Z) dt'= Oa(O, 0; Z) = 1 (3.26) 

Explicit forms of Ha and Od are unknown, but their physical implication is 
rather simple. Appendix B shows that Od describes the relaxation of 
na(0, t) from one equilibrium to another when the field Z (supposed to be 
external) makes a sudden and sufficiently small-amplitude jump. To be 
more precise, suppose that the distribution h a is in equilibrium under con- 

822/49/3-4-12 
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stant Z - Z 0  up to t = 0. Then let the field value be switched to a slightly 
different value Z1, and observe how hd(~P, t) evolves. Appendix B shows 
that the evolution is described by 

hd(tP, t )=~O(~;Zo)+(Z1--Zo){1--Od(~, t;Zo)} dhd~176 (3.27) 
dZo 

The order parameter component Zd is now given by 

;? ;? Za(t) = ndo(r Z(t)) d~' hao(~9; 2(t)~')e iv' d~9 (3.28) 

which may further be simplified as 

Zd(t) = ff~ ~do(ff; Z(t)~') ei~' d~ (3.29) 

because the first integral on the right-hand side of Eq. (3.28) is close to 1 
near Kc. This does not mean, however, that Ado can be replaced by ndo in 
Eq. (3.29), because the estimation of Zd(t) involves the differentiation of 
~d0(r Z) with respect to Z, as can be seen below. It should be noted that 
the difference between Z(t)* and Z(t), which is equal to the last term in 
Eq. (3.24), measures the degree of nonadiabaticity. To the first order in 
nonadiabaticity, the integrand in Eq. (3.29) becomes 

dhdo($; Z(t)) ~'~ d Z ( t -  t') 
t~dO(ff; Z(t) ~') =/~dO(I//; Z(t)) q- dZ(t) J o  dt' dt' 

which immediately leads to 

o~(q,, c; z(t)) 

(3.30) 

f • "  dq, Io ~ at' dt~dO(g'; Z(t)) aZ(t--  C) Zd(t) = dZ(t) dr' Od(O, t'; Z(t))e i~" (3.31) 

Recalling that Od(ff, t'; Z) describes the relaxation of h~(ff, t') when the Z 
value makes a small jump, we expect that the time scale of Od as a function 
of t' will be of the order of IKZI-1. The reason is that the oscillators 
responsible for the relaxation of n d are practically restricted to those with 
natural frequencies not much larger than [KZI; the other oscillators, even 
though they may constitute the majority of the group D, will virtually form 
a uniform phase distril~ution and remain unaffected by the variation of Z. 
Thus, O~ will satisfy, similarly to Os, the equation 

f •  Od(I/I , tt'~ Z )  dt '~-- ~d IKZI ' (3.32) 



Phase Transition in Oscillator Communities 587 

where ~a ~ still a function ~b, is of ordinary magnitude. With the use of 
Eq. (3.32), the Markovian approximation on Eq. (3.31) leads to 

dZ(t) IKZ(t)1-1 f~ ~o a dr~o(~; Z(t)) Z~(t)=- a--T- a~ aZ(t) e'~ (3.33) 

For small Z the integrand in the last equation gives rise to a small factor 
proportional to IKZ[, as is easily confirmed from Eq. (2.31). Thus, 

(dZ( t ) )  (3.34) zd ( t )~o \  dt J 

Putting Eqs. (3.11), (3.21), and (3.34) together, we obtain 

z = s  z - ~ l K z 1 - 1  + o  

-~(l+g) Z-~s--~-[lKZt -1 -f l lZl2Z+O -~ (3.35) 

This may further be reduced to 

dZ 
~ --~-[ [gZl l ~- e Z -  fl lZl2 Z (3.36) 

It should be noted that the D-group oscillators are completely irrelevant to 
the order parameter dynamcs. We have thus succeeded in generalizing our 
self-consistent equation (2.32) into a dynamic form. When the Markovian 
approximation is not permitted (for reasons stated later), one should use 
the equation 

Z(t) = Zs(t) = S(Z(t)) (3.37) 

Equation (3.36) allows us to study the stability of steady states and the 
relaxation to stable ones. It is obvious that the phase factor of Z cancels 
between the two sides. The phase O is thus an arbitrary constant and 
preserves its initial value. We choose O to be zero and regard Z as a real 
number. In the weak coupling region (e < 0), the zero solution is seen to be 
stable. Retaining only the lowest order term in Z, we get 

dZ/dt = -I~1 ~s -1 KZ2 (3.38) 

whose solution behaves like 

Z(t) ~ 1/lel t (3.39) 
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In the strong coupling region (E > 0), the zero solution loses stability and 
gives way to the nontrivial solution (e//3) 1/2 ~-Zst if /3 is positive. The 
equation linearized in the deviation i7, where 

t](t) - ~ -  Z( t )  - Zst (3.40) 

then becomes 

where 

Thus, 

dq/dt = -e3/27o~ / (3.41) 

7o = 2Kc/~sfl 1/2 (3.42) 

q(t) ~ exp( - 70e3/2t) (3.43) 

If/3 is negative, the nontrivial solution that appears in the weak coupling 
region is easily seen to be unstable. In the rest of the paper, we shall always 
assume the normal case, i.e., the case of positive/3. 

Finally, we remark that our starting assumption that the time scale 
IKZI 1 is shorter than that of Z is consistent. This is seen from Eq. (3.36), 
showing that the time scale of Z is O(leKZ] 1), which is in fact much 
longer than [KZ]-1 near Kc. 

4. N O R M A L  F L U C T U A T I O N S  OF T H E  O R D E R  P A R A M E T E R  

Let us come back to the steady state problem and study order 
parameter fluctuations around the steady state value found previously. The 
order parameter fluctuations here are of deterministic origin and are 
related to the ergodic motion of the D subsystem on T Nd. We begin with 
some preliminary remarks on the statistical equilibrium of our system. We 
found an equilibrium measure Po0r in section 2 [see Eq. (2.41)]. Our Po 
contains a constant parameter Z, which should now be interpreted as the 
statistical average of the dynamical variable Z(~r by means of Po(~). Let 
the statistical average of some variable f(t~) be denoted as ( f 0 r  i.e., 

( f ( v ) )  = d ~ f ( ~ ) p ( ~ )  (4.1) 

Then the self-consistent equation derived in Section2 should more 
correctly be written as 

(Z> = <Z~> + (Za>, (Z~> = S((Z>), <Za) = 0  (4.2) 
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Although the average of Z d is zero, it exhibits irregular temporal variation 
in the course of the motion of ~d o n  T Nd. The fact that Zd (and hence Z) 
fluctuates gives the very reason that our equilibrium measure Po(~) 
obtained from the assumption of constant Z is only approximate. In this 
section we shall still use this approximate Po to study fluctuations, whereas 
an improved fluctuation theory will be developed in the next section. 

As long as we use Po(~), the order parameter component Zs exhibits 
no fluctuation, but tends to the definite value S( (Z) ) .  Thus, we have 

Z ( t ) = S ( ( Z ) ) + Z d ( t )  for t ~ o o  (4.3) 

We will now investigate statistical properties of the stochastic process of 
Z~(t), or, equivalently, Z(t). This can be achieved by means of Pd0(~) and 
the equations of motion 

d~d/dt = %(~d; ( Z ) )  (4.4) 

The quantities of basic importance are some time correlations of Z, In 
Appendix C the following formulas are proved: 

(Zd(to) Z*(to + t) ) = (Zd(0) Z*(t) ) (4.5a) 

= <Zd(0 ) Zg(-t)> (4.5b) 

'F s = N  d~oGa(o9 ) iDl(~o)12e its,, (4.5c) 
- - c o  l = 1  

= F(t) 

(Re Zd(0 ) Re Zd(t)) = (Im Zd(0) Im Zd(t)) 

1 
=~ (Zd(O) Z*(t)) (4.5d) 

(Re Za(0) Im Zd(t)) = (Im Za(0) Re Za(t)) = 0 (4.5e) 

where Gd(CO) is the distribution of the coupling-modified frequencies for the 
D group [see Eq. (2.39)], and Dt(~o) are defined by 

e i~ju)= ~ Oz(cbj) e a~'~' (4.6) 
/ = 1  

Let the frequency spectrum of the order parameter fluctuation be denoted 
as F(~o), or 

F(og) 1 [= F( = -  t)ei~" dt = (IZ~(o~)f 2) (4.7) 
Jo  
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where 

lira 1 fo r Za(co) = r~  o~ (roT) 1/2 Zd(t)e -i~~ dt (4.8) 

Then the Fourier transform of Eq. (4.5c) is expressed as 

1 ~ Gd(1 ) D,(1)  21_i (4.9) F(co)=~l=l 

In the disordered phase ( K <  Kc), where Gd(co) = g(co), we have Dl(co) = 1 
and Dr(co)= 0 (l r 1), because the motion of exp(iOj) is perfectly sinusoidal 
like exp[i(cojt + const)]. This means that 

1 co F(co) = ~ g ( ) ,  ( K <  K~) (4.10) 

In the ordered phase (K>Kc) ,  in contrast, F(co) deviates from Gd(co ) 
especially at low frequencies (co<~]K(Z)])  because the corresponding 
oscillations are highly nonsinusoidal. It is shown in Appendix C that 

I I 09 F(co)_~G~(co)_~ ~ g(), [co/K(Z)l ~ 1 

~bco2 - N ' Ico/K<Z>l '~ 1 (4.11) 

where 

b_~. g(0) ~ 1-3 (4.12) 
]K(Z)I2z=I 

while Ga(co) was found to be linear in co in the low-frequency region, F(co) 
in the same region is quadratic in co, thus exhibiting even an stronger 
intensity drop there. 

The total intensity of the order parameter fluctuations is given by 

1 foo ~ 1 - r  (4.13) (IZ-(Z)lR)=(IZdl2)=~ dcoGd(co) [Dz(co)12 = N 
00 l=1 

where identity (C.8) has been used and r is defined by Eq. (2.18). The total 
intensity of fluctuations is thus constant in the disordered phase because r 
vanishes there, and as K increases beyond Kc it decreases with the develop- 
ment of the long-range order. So far, the order parameter fluctuations have 
entirely been attributed to D-group oscillators, and as a result there has 
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been no chance for the fluctuations to be enhanced near Ko. Such a theory 
is insufficient and needs to be improved so as to include fluctuations from 
S-group oscillators. This is what we do in the next section. 

5. S T O C H A S T I C  E V O L U T I O N  E Q U A T I O N  A N D  A N O M A L O U S  
F L U C T U A T I O N S  OF T H E  O R D E R  P A R A M E T E R  

The analysis of the order parameter fluctuations carried out in the 
preceding section was based on the approximate invariant measure Po(~). 
In obtaining this measure, we neglected the effect of the order parameter 
fluctuations on the motion of the individual oscillators. Since the resulting 
individual motions themselves make Z fluctuate, we must admit that our 
previous treatment was not consistent enough. According to the previous 
treatment, the fluctuations in Z come entirely from the D subsystem. 
Actually, however, the oscillators in the S group, being agitated by the fluc- 
tuating Z, can also fluctuate, and such an effect could be fed back to Z. A 
more specific description of this kind of secondary process, which could be 
important near the critical point, is the following. Suppose that a fluc- 
tuation in the order parameter occurred at some time. This may capture a 
few oscillators of relatively low frequencies and hold them in a transient 
phase-locked state. As a result, the fluctuation will be enhanced, which may 
force more oscillators into locking states, and so forth. In this way, the 
order parameter fluctuations may develop cooperatively starting from an 
initial seed of normal fluctuation into an anomalous level and even into a 
macroscopic level. In the present section we try to incorporate this kind of 
secondary (but possibly important)  effect into our theory, and discuss how 
the previous results on fluctuations should be modified near the critical 
point. In trying to formulate our statistical mechanical theory, any attempt 
to find a correct invariant measure beyond the previous one would be 
hopelessly difficult. Instead, we take a different approach, trying to find a 
stochastic evolution equations for Z with a noise term of known statistical 
properties. 

Our starting assumption is again that the population can unam- 
biguously be divided into S and D subgroups as 

z(t) = z s ( t )  + zd ( t )  (5.~) 

Although every oscillator should experience fluctuating Z, the effect of 
order parameter fluctuation seems to be more important to the S group 
than to the D group, as is expected from the above qualitative argument on 
the secondary effect of fluctuations. We may, assume, therefore that the 
statistical properties of Zd(t) remain the same as those clarified in Sec- 
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tion 4, where Z was supposed to be constant. The problem now is to 
express Zs(t) in terms of the solutions for ~s(t) under fluctuating Z. We 
saw in Section 3 that Zs behaves as in Eq. (3.11) provided that the tem- 
poral variation of Z is sufficiently slow. Although Z now involves a rapidly 
fluctuating part superimposed on the slowly varying part, we still assume 
that Eq. (3.11) remains valid and substitute it for the systematic part of the 
stochastic evolution equation we are trying to find. This does not seem 
unreasonable, and what should rather be noticed is that the condition we 
thought necessary for the derivation of Eq. (3.11) was a little too restrictive. 
As is easily confirmed, the fact is that the condition we actually needed for 
deriving Eq. (3.11) was that the net variation of Z over the typical time 
scale of S-group oscillators is much smaller than Z itself, and by no means 
that Z is free from any ripples of rapidly varying components. Assuming 
that Eq. (3.11) can be used as the systematic part of our stochastic 
evolution equation, we have 

z( t )  = s ( z ( t ) )  + zd(t)  (5.2) 

This equation may be looked upon as a generalization of Eq. (3.37) and 
also of Eq. (4.3); recall that those equations are generalizations of our self- 
consistent equation (2.32) in different ways. 

We now reduce Eq. (5.2) to a form more convenient for our present 
purposes. Since the difference between Z(t) and Z(t) is supposed to be 
small, as mentioned repeatedly, Eq. (5.2) may be approximated near Kc as 

Z(t) = (1 § ~) Z(t) - fl I Z(t)l 2 Z(t) + Za(t ) (5.3) 

or even by 

Z ( t )  - Z ( t )  = eZ( t )  - H 12(012 Z ( t )  + Z a ( t )  (5.4) 

It is interesting to observe that the stochastic term Zd(t) in Eq. (5.4) plays 
qualitatively different roles, depending on the frequency range of the order 
parameter fluctuations in which we are interested. If we focus on suf- 
ficiently slow components of Z(t), the left-hand side becomes proportional 
to dZ(t)/dt, as was shown in Section 3. Then the stochastic term acts as 
fluctuating forces. On the contrary, if we are concerned with rapidly 
fluctuating components of Z(t), we see that Eq. (5.4) practically reduces to 
Z(t) ~- Zd(t) because Z(t) contains no such components and the other two 
terms on the right-hand side are much smaller than Z(t). Thus, the 
stochastic term no longer acts as forces, but contributes directly to the 
order parameter fluctuations. 
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In the disordered phase (e <0), one may neglect the cubic term in 
Eq. (5.4) to obtain 

z ( t )  - z ( t )  = - le l  Z(t) + Zd(t ) (5.5) 

In the ordered phase (e > 0), it is more suitable to transform Eq. (5.4) into 
a set of equations for the amplitude and phase of Z. We define the 
amplitude deviation q by 

r/(t) = I Z ( t ) l -  ( I Z l )  - I Z ( t ) l -  I ( Z ) l  (5.6) 

In the last near-equality the smallness of the phase fluctuation of Z is 
assumed, the validity of which will be confirmed later. Linearization of 
Eq. (5.4) in t/then leads to 

rift) = q(t) = -2et/(t) + f ( t ,  O(t))  (5.7) 

where 

f ( t ,  O(t))  = Re[Za( t )  e - '~ (5.8) 

In deriving an equation for O, one may neglect amplitude fluctuation. Then 
we get 

O(t) -- O(t)  = h(t, O(t)) (5.9) 

where 
h(t, O(t))  = ](Z)[--1 imEZd(t) e iou)] (5.10) 

The quantities with bars in Eqs. (5.5), (5.7), and (5.9) need to be expressed 
more explicitly. In order to do this, we employ the approximation in which 
the quantity [Z(t)l appearing in the definition of Hd Esee Eq. (3.14)] is 
replaced by its statistical average ( IZI) .  Note that ( [ZI )  is positive 
definite and should not be approximated by ( I Z l )  in the disordered phase. 
It is expected that in the disordered phase (IZI) is equal to a typical 
amplitude of order parameter fluctuation, or 

( [ Z l ) = c q ( l Z [ 2 )  t/= (~<0) (5.11) 

where ~ is some constant of order 1. One may now express Hs(t ) in the 
scaling form 

Hs(t) = K (  IZl ) /Ts(K( IZI ) t) (5.12) 

where 

/75(2) = 4 f2 d y ( 1 - y 2 ) e x p E - ( 1  - y2)~/22] (5.23) 
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Property (5.12) together with the normalization condition (3.15) implies 
that the Fourier components defined by 

H~(o9) = Hs(t)e -i.), dt (5.14) 

have the following asymptotic properties: 

Hs(CO ) --- 0, I~ol/K( [Z[ ) >3:, 1 
(5.15) 

~- 1 - c~2 i o , ) / K (  IZl ), I~I/K( IZl > '~ 1 

where e2 is a constant of ordinary magnitude. In order to calculate the 
order parameter fluctuations in the disordered phase, we rewrite Eq. (5.5) 
in terms of Fourier components: 

za(~o) 
z(co) = 1 --(1 + e)/75(~o) (5.16) 

o r  

(iZ(~o)12) = F(~) g(e)) 
i i_(l+e)Hs(co)lU=Nil_(l+e)Hs(o))12 (5.17) 

From Eqs. (5.15) and (5.17), the asymptotic forms of the fluctuation 
spectrum become 

( IZ(~)l 2 ) ~_ g(~), t l ,  co, >> 1 
N K( IZ[ ) 

(5.18) 
1 g(co) I~1 

- - 4 1  ~-Nc2 +(~2a)/g(lZl)) 2' K ( [ / [  ) 

The total fluctuation intensity is then roughly estimated as 

(Iz12) = f o  ( Iz(~)12)  &o 

1 ~ 1 ~x<lzl> g(co) &o 
~-NfK<lzl>g(c~ NOo g2-l-(a2o.)/K(lZ]))2 

1 (K(]Z[2)l/2~ (5.19) 
- - - ~ + O  eN J 

The last equation represents a self-consistent equation for fluctuations, and 
its solution behaves as follows. If e > N -1/2, the normal part of fluctuations 
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is dominant, i.e., (IZ] 2) ~ 1/N, and we have the same result as in Sec- 
tion 4. By including the first correction, we have 

( ]Z[ 2 } ~_ 1/N + O( 1/eN 3/2 ) ( 5.20 ) 

If e < N -~/2, the anomalous part is dominant, and we have 

(IZl 2 > ~_ O( 1/e2N 2) (5.21) 

In any case, critical fluctuations on the order of 1IN are absent, and this 
result is in sharp contrast to ordinary thermodynamic phase transitions. 

We now proceed to the ordered phase. The stochastic term in Eqs. 
(5.7) and (5.9) are state-dependent (i.e., O-dependent), but the variable O 
may safely be replaced there by its statistical average (which actually 
exists). Thus, f ( t ,O( t ) )~- f ( t ,  (O}) ,  and similarly for h(t,O(t)). The 
Fourier components of f ( t )  and h(t) are now denoted as f(co) and h(~o), 
respectively. One may easily check the properties 

(If(a))l  2 } = �89 (5.22) 

([h(co)[ 2 } = �89 ( Z } I - 2  F(~o) (5.23) 

From Eq. (5.7) the Fourier components of the amplitude fluctuation 
become 

f(cg) t/(co) = (5.24) 
1 - (1 - 2 g )  Hs((o)  

whose mean square behaves asymptotically as 

~- N ' >>1 
(5.25) 

1 b(_o 2 K@Z) -~-- 4 1  
N 4g 2 + [o;2o)/K( Z ) [  2' 

Here we have used the asymptotic form of F(~o) [see Eq.(4.11)]. 
Equation (5.25) enables us to make a rough estimation of the total inten- 
sity, and we find 

~o b ~lK<z>i 092 
1 Ga(c~176 4e3+lo~2co/K(Z}l 2de~ 

Gd(~O) do + O \--~- J0 ,~2 _1_ g 1(.02 

-~ N + O (5.26) 
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It is seen that the low-frequency part gives only a negligible contribution, 
so that there are no critical fluctuations at all. 

The phase fluctuation of Z can be estimated from Eq. (5.9). Its Fourier 
components satisfy 

Thus, 

o(~o) = h(co)/[ 1 -/ / ,(~o) 3 (5.27) 

( io(co) l~>_ 1 I (Z>1-2 F((-o) 
2 I 1 -  H~(m)l ~ 

#g(co) K@Z) 2eN ' ~> 1 

K 2 b K@Z ) 
~- 2c~2 N ,  ~ 1 (5.28) 

d Z  
d--i-I(Z>l ' "-' - I ~ l Z + Z a  (5.29) 

which is valid for time scales longer than ] K ( Z ) ] - 1 .  Because of the large 
factor 1(2)1-1 multiplying dZ/dt ,  the above equation resembles the 
Langevin equation 

m dr~dr = - T v  + fluctuating forces (5.30) 

for a Brownian particle with large mass m. The smallness in critical fluc- 
tuation is thus interpreted as originating from the large inertia of the order 
parameter, in much the same way as a heavy Brownian particle exhibits 
small velocity fluctuations. In the presence of macroscopic order, the order 
parameter fluctuations are further suppressed by the additional effect that 
the intensity of the low-frequency components of the stochastic term 
becomes extremely small. The same effect is responsible for the absence of 

It is remarkable that (IO(~)12) remains finite in the limit ~o-*0 (under 
fixed e). As a result, the total intensity (IOI 2) is also nondivergent. This 
property should be contrasted with ordinary systems of broken continuous 
symmetry under stochastic driving forces for which the order parameter 
phase exhibits diffusion, thus eventually restoring the original symmetry. 

Finally, we make a few comments on the above peculiar fluctuation 
characteristics, i.e., unexpectedly weak critical fluctuations and non- 
divergent phase fluctuation. A qualitative reason for small low-frequency 
fluctuations in the disordered phase can be better appreciated if one 
approximates Eq. (5.5) by the Markovian form 
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phase diffusion. It is easily seen from Eq. (5.28) that the low-frequency 
singularity of the phase fluctuation, which would appear if the noise 
intensity were constant in the low-frequency region, is perfectly canceled by 
F(co), which is proportional to i~] 2 in the same region. 

No computer studies on critical fluctuations and order parameter 
relaxation exist except Daido's brief reports on a computer simulations for 
a time-discrete version of the present model. (1~) It is hoped that extensive 
numerical studies and comparison with the present theory and related ones 
will be undertaken in the near future. 

6. C O N C L U D I N G  R E M A R K S  

Dissipative dynamical systems of infinitely many degrees of freedom 
are formidable objects for scientific research. Any effort at finding new 
methods and concepts w i t h  potential universal applicability would 
therefore be welcome. In this final section we direct our attention to a cer- 
tain unique feature of the present approach, hoping that it might possibly 
enjoy wider applicability in the future. The system treated in the present 
theory is rather special in some respects. In particular, we assumed an 
externally given distribution in frequency and also a special form of coupl- 
ing (i.e., mean field coupling). These assumptions made it possible to 
represent almost exactly the high-dimensional attractor by a high-dimen- 
sional torus. As a generalization of our system, one may imagine a system 
of short-range interaction. Our high-dimensional attractor would then be a 
genuine strange attractor, and what the present approach suggests is that 
this attractor should also be replaced by a torus. From the viewpoint of 
dynamical system theory, such an approximation may be absurd. From the 
viewpoint of statistical mechanics of many-body systems, however, the 
same kind of approximation is by no means unreasonable. Quite on the 
contrary, it is of daily use and is known as the mean field approximation. 
In mechanical language, the mean field approximation (or, more generally, 
one-particle approximation) in usual thermodynamic systems with a 
Hamiltonian implies replacement of an ergodic orbit by a set of tori, and 
essentially the same step was also taken in the present approach. The only 
difference is that in thermodynamic systems each of those tori has its own 
statistical weight determined from the uniform measure on the surface of 
constant energy, whereas in our particular dissipative system only one 
torus is sufficient because it covers the entire measure. Since we know 
nothing about the general form of the invariant measure in large dissipative 
systems, some approximation made at the mechanical level (typically, 
replacement of a strange attractor by tori) should inevitably precede the 
construction of an invariant measure. For many-body Hamiltonian 
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systems, in contrast, the introduction of one-particle pictures, possibly in 
various sophisticated forms far beyond the mean field theory, comes after 
the general form for the invariant measure has been found. 

In any case, our proposal of reversing the order of traditional steps in 
approaching the statistical mechanics of large dynamical systems seems to 
deserve further serious consideration. 

A p p e n d i x  A 

Formulas (3.11), (3.13), and (3.14) are derived below. We begin with 
the definition of Zs" 

Zs(t) = [2= ns(r t)e'* d~ (A.1) 
Jo 

For  each oscillator in the S group, the natural frequency co and the phase 
value as t ~ oo have a one-to-one correspondence: 

~(t) = O(t) ~~ + sin -1 
co 

KIZ(t)~I 
(A.2) 

which is nothing but an explicit form of Eq. (3.8). With the help of 
Eq. (A.2), the phase distribution ns is most easily calculated from the 
identity 

ns(~9) de  = g(co) dco (A.3) 

the insertion of which into Eq. (A.1) yields 

Zs(t)= fSgroupdco g(co)exp {iIO(t)~ +s in  'K]~t)o~[]} (A.4) 

The new variable y defined by 

y = co/ KlZ( t )~ (A.5) 

is now used instead of co in Eq. (A.4). Because the subpopulation boun- 
daries existing at about co = +_KIZ(t)[ are somewhat obscured, and may as 
well be regarded as existing at co = ++_KJZ(t)~[, one can fix the range of the 
co integration in Eq. (A.4) according to 

dco = dy KIZ(t)~o[ (A.6) 
g r o u p  1 
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In this way, Eq. (A.4) becomes 

Z~(t) = dy KIZ(t)Yl g(glz(t)Yl y) 
--1 

x exp[i(sin -~ y + O(t)Y)] 

= f~ dy glz(t)Yl ee~ I y)(1 - y2)U2 
--1 

= 2  dy KZ(t)Y g(KIZ(t)Y I y)(1 - y2)1/,2 (A.7) 

where we have ignored the possibility of a correlated motion between the 
amplitude and phase of Z; this is consistent with the conclusion in 
Section 3, where we find that O is a constant of motion. Note that the last 
expression in Eq. (A.7) coincides with S(Z(t)) if the y dependence of the 
bar is ignored [see Eq. (2.32)]. A small-amplitude expansion of Eq. (A.7) 
gives 

Zs(t ) : 2gg(O) f~ dy Z ( t )Y (1  -- y2)1/2 

+ K3g"(0) d y y 2 ( 1 - y 2 ) m l ~ i ) y 1 2 7 ( t ) Y +  . . .  (A.8) 

The first term in the above expansion is expressed as 

[1 dY'Z(t)Y( 1 _ y2)1 /2  (1 +~) Z ( t )  2Kg(0) 
J0 

(A.9) 

where the bar without oscillator dependence is defined by 

z ( t )  = 4 [ ,  dy z ( o ' ( 1  - (A.10) 

Equation (A.10)is identical to Eq. (3.13), as is easily seen from the 
definition of the oscillator-dependent bar given by Eq. (3.9). The cubic term 
in Eq. (A.8) is not like Iz(t)l 2 z(t). However, the quantity Z(t) y is only 
slightly different from Z(t), so that this small difference can safely be 
neglected in the cubic term, which itself is much smaller than the linear 
term. The same reasoning applies to terms higher than the third, and in 
this way we arrive at Eq. (3.11). 
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A P P E N D I X  B 

Formulas (3.22)-(3.27) are derived here. Before trying to find a 
general form of rid(0, t) under slowly varying Z, let us consider a simpler 
process in which Z varies in small amplitude about some value Zo like 

Z(t) = Z o + 6Z(t) (B.1) 

The distribution ha(O, t) should then be not much different from 
ndo(0; Zo), but we are concerned with this small difference as a functional 
of 6Z(t). It should be remembered, however, that the boundary of the D 
group is somewhat blurred due to the temporal variation of Z. As is stated 
in the text, we always ignore such a blurring effect or the effect from the 
small number of borderline oscillators. In the linear process under 
consideration, this means that we ignore the inflow and outflow across the 
boundaries. Thus, we confine our observation to those oscillators that are 
in some sense deep in the D group over the entire linear process (B.1), so 
that the total number of such well-defined D-group oscillators is supposed 
to be constant (but of course dependent on Zo). For this reason, it is more 
appropriate to work mainly with the normalized distribution 

If? hd(0, t) = nd(0, t) ha(O, t) dO (a.2) 

rather than rid(O, t). Because nd(0, t) can be regarded as a linear functional 
of 6Z(t), it should generally take the form 

rid(0, t) = fido(0; Zo) + dt' 6Z(t - t') M(r  t'; Zo) (B.3) 

If 6Z is constant in time, rid(0, t) must coincide with r~ao(0; Zo + 6Z), so 
that in the linear approximation 

dnd0(0; Zo) 
~d(O, t) = fido(O; Zo) + 6Z  (B.4) 

dZo 

By comparison of Eqs. (B.4) and (B.3) for the special case 6Z = const, we 
obtain the identity 

foaM(O, t'; Z) (B.5) 
d/'~dO(0, Z) 

dt' 
dZ 

Introduce a real function Hd(0, t; Z) by 

M(0, t; Z) = dfidO(0; Z) Ho(0 ' t; Z) (B.6) 
dZ 
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Obviously, 

Equation (B.3) now becomes 

foo ha(0, t) = fido(0; Zo) + dt' 
0 

H,~($, t'; Z) dt '= 1 

d~o(~; Zo) 
dZo 

(B.7) 

6 z ( t -  t') ua(~, t'; Zo) (B.8) 

which may be represented compactly in the linear approximation as 

~a(~', t) = fo ~ 

Thus, the unnormalized distribution is given by 

dt' nao(O; Z ( t -  t')) Ha(O, t'; Zo) 

dt' fiao(~; Z ( t -  t')) Ud(~, t'; Z(t)) (B.9) 

nao(~', t; Zo) d~p'. na(~, t) 

nao($', t; Z(t)) dtp' f TM 

Oo 
dr' aao(~; Z ( t -  t')) Ha(~,, t'; Z(t)) 

(B.lO) 

again within linear approximation. 
So far the study has been on a linear process with respect to the 

amplitude variation of Z. We now proceed to the case where the variation 
of Z is nonlinear. But the evolution of Z is so slow that its variation can 
still be regarded as linear over a finite period. This period can be much 
longer than the decay time of / /d ,  which is O(IKZI ~). Let the time axis be 
divided into segments the length of which about time t is chosen to be 
longer than IKZ(t)[ ~ but shorter than the characteristic time of Z. Then in 
each such interval Eqs. (B.9) and (B.10) hold, which is equivalent to saying. 
that the same equations hold over the entire time domain. Moreover, Eqs. 
(B.9) and (B.10) reduce, respectively, to Eqs. (3.22) and (3.23) because of 
the assumed local linearity in the variation of Z. 

One can understand the physical implications of the function F/a by 
applying formula (B.8) to the special process 

822/49/3-4-13 
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where Z1 - Z o -  6Z is sufficiently small. It is clear that 

l 
/~dO(0; Zo), 

ha(0, t) = 6Z dhd~ Zo) fo Zo) dt', hdO(0; Zo) + dZ ~ Ha(O, t'; 
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t~<0 

t > 0  

(B.12) 

Since we have 

Ha(O, t'; Zo) dt' = - Ha(0, t'; Zo) dt' + Ha(0, t'; Zo) dt' 

= - O a (  0, t ; Z o ) +  1 (B.13) 

where Od is defined by Eq. (3.25), we finally obtain Eq. (3.27). 

A P P E N D I X  C 

Formulas (4.5a)-(4.5e) will be proved first. By definition, 

(zd(to) zJ'(to + t)) 

j,j'~D 
where the notation qd without time argument should be understood as 
~d(0). Because the oscillators are mutually uncorrelated, the terms to be 
retained in the summation in Eq. (C.1) are only those with j = j ' .  In this 
way, we get 

(za(to) z/(to + t)) 

1 ,2~ d ~J =N~ j~D JO OJ-2-~cvj(Oj)-l exp{i[Oj(t~176 + t)]} 

1 ~ ~ j  ~2~/~,~ 
= ~-~ j~o ~-~ jo drexp{i[Oj(to+Tl-Oj(to+r+t)]} 

=-~  j~D ~ &j f2~/a' dr exp{ i[ Oj(z) -- Oy(T + t) ] } 

= (Zd(0)  Z~(t)) = F(t) (C.2) 
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where the second equation results from the obvious equation 

dO J( z ) = vj( Sj(* ) ) 
d* 

(c.3) 

Equation (4.5a) has thus been proved. 
The definition (4.6) of Dr(co) immediately leads to the equality 

c7~ s d~exp{i[~j(z)-~j(z+t)]}= ~, [D,(Coj)12exp(-il~jt) (C.4) 
2~ o l = 1  

Substitution of Eq. (C.4) into Eq. (C.2) gives 

1 
F ( t ) = ~  ~ ~ [D,(&j)12exp(--il@t) (C.5) 

j ~ D  l--1 

Equation (C.5) can be expressed in terms of the distribution Gd(&) of a5 o in 
the form of Eq. (4.5c). The time-reversal symmetry in Eq. (4.5b) can be 
proved as follows. First we notice that the oscillators with real frequencies 
& and -e5 are equally populated: 

Gd(ch) = Gd( -- c3) (C.6) 

Second, ~ j ( t ) = - ~ j ( t ) + c o n s t  for any t, provided that @ = - @ .  This 
second property is applied to the definition of Dr(oh ) in Eq. (4.6) to give 

ID,(~)I2  = I D , ( - & ) l  2 (C.7)  

From Eqs. (C.6), (C.7), and (4.5c), property (4.5b) is clear. 
Calculations of (ReZd(0) Re Zd(t)) and ( ImZa(0)  ImZd( t ) )  go 

essentially the same way as that of F(t); the proofs of Eqs. (4.5d) and (4.5e) 
are straightforward and omitted here. 

To find the main features of the power spectrum F(co), we need some 
knowledge about D~(a3). First, the property 

IO,(o3)Iz = 1 (C.8) 
l = l  

is obtained from Eq. (C.4). The l dependence of Dt(~5) is entirely different 
in high- and low-frequency regions. If the real frequency ~ satisfies 
]c3/K(Z)[ > 1, the corresponding oscillator undergoes an almost smooth 
oscillation. This means that practically only the fundamental component is 
nonvanishing: 

[ O , ( ~ ) [  2 ~ 1 
(C.9) 

Dt(o3) --- 0, 1~>2 
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In contrast, if I~o/K(Z)I ~ 1, the oscillation is strongly nonsmooth; for 
most of the period the oscillator phase sits near ~/2 or - n / 2  (depending on 
the sign of (~), which is followed abruptly by a departure and relatively 
quick circuit back to the original position. As a consequence, the quantity 
exp[iff(t)] behaves as periodic pulses with width o ( ] g ( Z ) l ) .  This means 
that IDt((h)] 2 are nonvanishing and almost/-independent for I< ]g(z ) /&l ,  
while they are virtually zero for 1> IK(Z)/~I. Taking account of the 
normalization condition (C.8), we thus obtain 

ID,(o~)l 2 ~ I~/K<Z)I, l~  IK<Z)/r~I 

O, l~ IK<Z)/~I 
(c.to) 

Properties (C.9) and (C.10) are sufficient for studying the characteristics of 
the fluctuation spectrum F(~o) through Eq. (4.9). At high frequencies 
(IcS/K(Z)I > 1), only the term with l =  1 contributes to F(co), and we get 
Eq. (4.10), while at low frequencies (]~/K(Z)[ < 1) we have 

F(~o) -~ ~ Gd 
l L 

(C.11) 

Substitution of the low-frequency form of Gd(co) given by Eq. (2.40) into 
Eq. (C.11) leads to formula (4.11). 
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